20.1.2 Lab – Configure Secure DMVPN Tunnels Answers

Lab – Configure Secure DMVPN Tunnels (Answers Version)

Answers Note: Red font color or gray highlights indicate text that appears in the instructor copy only.

This topology has 3 routers and 1 switch. R1 G0/0/1 is connected D1 G1/0/11. R2 G0/0/1 is connected to D1 G1/012. R3 G0/0/1 is connected to D1 G1/0/13.

Device

Interface

IPv4 Address

R1

G0/0/1

192.0.2.1/24

R1

Tunnel 1

100.100.100.1/29

R2

G0/0/1

198.51.100.2/24

R2

Loopback 0

192.168.1.1/24

R2

Loopback 1

172.16.1.1/24

R2

Tunnel 1

100.100.100.2/29

R3

G0/0/1

203.0.113.2/24

R3

Loopback 0

192.168.3.1/24

R3

Loopback 1

172.16.3.1/24

R3

Tunnel 1

100.100.100.3/29

Part 1: Build the Network and Verify DMVPN Phase 3 Operation

Part 2: Secure DMVPN Phase 3 Tunnels

In previous labs, you have configured DMVPN Phase 1 and Phase 3 networks, including configuration of DMVPN Phase 3 with IPv6. However, in those labs, IPsec was not used to encrypt and protect data travelling on the tunnels. IPsec functionality is essential to DMVPN implementation. In this lab, you will work with the DMVPN Phase 3 implementation from the Implement a DMVPN Phase 3 Spoke-to-Spoke Topology lab. You will start with a working configuration and then apply IPsec to the spoke-to-hub and spoke-to-spoke tunnels. Finally, you will verify the operation of the secured tunnels.

Note: The routers used with CCNA hands-on labs are Cisco 4221 with Cisco IOS XE Release 16.9.4 (universalk9 image). The switch used is a Cisco Catalyst 3650 with Cisco IOS XE Release 16.9.4 (universalk9 image). Other routers, Layer 3 switches, and Cisco IOS versions can be used. Depending on the model and Cisco IOS version, the commands available and the output produced might vary from what is shown in the labs. Refer to the Router Interface Summary Table at the end of the lab for the correct interface identifiers.

  • 3 Routers (Cisco 4221 with Cisco IOS XE Release 16.9.4 universal image or comparable)
  • 1 Switch (Cisco 3560 with Cisco IOS XE Release 16.9.4 universal image or comparable)
  • 1 PC (Choice of operating system with a terminal emulation program installed)
  • Console cables to configure the Cisco IOS devices via the console ports
  • Ethernet cables as shown in the topology

Initial Configurations

Students will use the answer configurations from the lab Implement a DMVPN Phase 3 Spoke-to-Spoke Topology. If they do not have the preconfigured devices, they could benefit by practicing configuration of DMVPN Phase 3 from that lab. Otherwise, they could paste the initial configurations into the devices. Initial configurations are provided here.

R1 hub router

hostname R1

no ip domain lookup

banner motd # R1, Implement DMVPN Hub #

line con 0

exec-timeout 0 0

logging synchronous

exit

line vty 0 4

privilege level 15

password cisco123

exec-timeout 0 0

logging synchronous

login

exit

interface g0/0/1

ip address 192.0.2.1 255.255.255.252

no shutdown

exit

interface tunnel 1

tunnel mode gre multipoint

tunnel source g0/0/1

tunnel key 999

ip address 100.100.100.1 255.255.255.248

ip nhrp network-id 1

ip nhrp authentication NHRPauth

ip nhrp map multicast dynamic

ip nhrp redirect

bandwidth 4000

ip mtu 1400

ip tcp adjust-mss 1360

exit

router eigrp DMVPN_TUNNEL_NET

address-family ipv4 unicast autonomous-system 68

eigrp router-id 1.1.1.1

network 100.100.100.0 255.255.255.248

af-interface tunnel 1

no split-horizon

router eigrp DMVPN_TRANS_NET

address-family ipv4 unicast autonomous-system 168

eigrp router-id 10.1.1.1

network 192.0.2.0 255.255.255.252

end

R2 spoke router 1

hostname R2

no ip domain lookup

banner motd # R2, Implement DMVPN Spoke 1 #

line con 0

exec-timeout 0 0

logging synchronous

exit

line vty 0 4

privilege level 15

password cisco123

exec-timeout 0 0

logging synchronous

login

exit

interface g0/0/1

ip address 198.51.100.2 255.255.255.252

no shutdown

exit

interface loopback 0

ip address 192.168.2.1 255.255.255.0

no shutdown

exit

interface loopback 1

ip address 172.16.2.1 255.255.255.0

no shutdown

exit

interface tunnel 1

tunnel mode gre multipoint

tunnel source loopback 0

no tunnel destination

tunnel key 999

ip address 100.100.100.2 255.255.255.248

ip nhrp network-id 1

ip nhrp authentication NHRPauth

ip nhrp nhs 100.100.100.1

ip nhrp map multicast 192.0.2.1

ip nhrp map 100.100.100.1 192.0.2.1

ip nhrp shortcut

ip mtu 1400

ip tcp adjust-mss 1360

router eigrp DMVPN_TUNNEL_NET

address-family ipv4 unicast autonomous-system 68

eigrp router-id 2.2.2.2

network 100.100.100.0 255.255.255.248

network 172.16.2.0 255.255.255.0

eigrp stub connected

router eigrp DMVPN_TRANS_NET

address-family ipv4 unicast autonomous-system 168

eigrp router-id 20.2.2.2

network 198.51.100.0 255.255.255.252

network 192.168.2.0 255.255.255.0

end

Router R3 spoke 2

hostname R3

no ip domain lookup

banner motd # R3, Implement DMVPN Spoke 2 #

line con 0

exec-timeout 0 0

logging synchronous

exit

line vty 0 4

privilege level 15

password cisco123

exec-timeout 0 0

logging synchronous

login

exit

interface g0/0/1

ip address 203.0.113.2 255.255.255.252

no shutdown

exit

interface loopback 0

ip address 192.168.3.1 255.255.255.0

no shutdown

exit

interface loopback 1

ip address 172.16.3.1 255.255.255.0

no shutdown

exit

interface tunnel 1

tunnel mode gre multipoint

tunnel source loopback 0

no tunnel destination

tunnel key 999

ip address 100.100.100.3 255.255.255.248

ip nhrp network-id 1

ip nhrp authentication NHRPauth

ip nhrp nhs 100.100.100.1

ip nhrp map multicast 192.0.2.1

ip nhrp map 100.100.100.1 192.0.2.1

ip nhrp shortcut

ip mtu 1400

ip tcp adjust-mss 1360

router eigrp DMVPN_TUNNEL_NET

address-family ipv4 unicast autonomous-system 68

eigrp router-id 3.3.3.3

network 100.100.100.0 255.255.255.248

network 172.16.3.0 255.255.255.0

eigrp stub connected

router eigrp DMVPN_TRANS_NET

address-family ipv4 unicast autonomous-system 168

eigrp router-id 30.3.3.3

network 203.0.113.0 255.255.255.252

network 192.168.3.0 255.255.255.0

eigrp stub connected

end

Layer 3 Switch DMVPN

hostname DMVPN

no ip domain lookup

ip routing

banner motd # DMVPN, DMVPN cloud switch #

line con 0

exec-timeout 0 0

logging synchronous

exit

line vty 0 4

privilege level 15

password cisco123

exec-timeout 0 0

logging synchronous

login

interface g1/0/11

no switchport

ip address 192.0.2.2 255.255.255.252

no shutdown

exit

interface g1/0/12

no switchport

ip address 198.51.100.1 255.255.255.252

no shutdown

exit

interface g1/0/13

no switchport

ip address 203.0.113.1 255.255.255.252

no shutdown

exit

router eigrp DMVPN_TRANS_NET

address-family ipv4 unicast autonomous-system 168

eigrp router-id 40.4.4.4

network 192.0.2.0 255.255.255.252

network 198.51.100.0 255.255.255.252

network 203.0.113.0 255.255.255.252

end

Part 1:Build the Network and Verify DMVPN Phase 3 Operation

In Part 1, you will set up the network topology and configure basic settings if the network is not already configured. This lab uses the same topology and final configurations from the Implement a DMVPN Phase 3 Spoke-to-Spoke Topology lab.

Step 1:Cable the network as shown in the topology.

Connect the devices as shown in the topology diagram.

Step 2:Configure initial settings for each router and the Layer 3 switch.

Console into each device, enter global configuration mode, and apply the initial settings for the lab if the devices are not already configured.

Step 3:Verify connectivity in the network.

  1. From R1, ping the loopback interfaces of R2 and R3. All pings should be successful. This verifies that full connectivity exists in the underlay, or transport, network.

Open configuration window

R1# ping 192.168.2.1

Type escape sequence to abort.

Sending 5, 100-byte ICMP Echos to 192.168.3.1, timeout is 2 seconds:

!!!!!

Success rate is 100 percent (5/5), round-trip min/avg/max = 1/1/1 ms

R1# ping 192.168.3.1

Type escape sequence to abort.

Sending 5, 100-byte ICMP Echos to 192.168.3.1, timeout is 2 seconds:

!!!!!

Success rate is 100 percent (5/5), round-trip min/avg/max = 1/1/1 ms

Close configuration window

Step 4:Verify DMVPN Phase 3 operation.

  1. Return to R2. Initiate a traceroute to the simulated LAN interface on R3. The path will pass through R1 as it does in a DMVPN Phase 1 network.

Note: The first trace may fail if the DMVPN switch CAM table is empty.

Open configuration window

R2# traceroute 172.16.3.1

Type escape sequence to abort.

Tracing the route to 172.16.3.1

VRF info: (vrf in name/id, vrf out name/id)

1 100.100.100.1 1 msec 1 msec 1 msec

2 100.100.100.3 1 msec *2 msec

  1. Issue the traceroute command again. You will now see that R1 has enabled direct spoke-to-spoke communication between R2 and R3. This tunnel will expire and close dynamically. The tunnel reopens after data for the spoke router is sent again.

R2# traceroute 172.16.3.1

Type escape sequence to abort.

Tracing the route to 172.16.3.1

VRF info: (vrf in name/id, vrf out name/id)

1 100.100.100.3 1 msec *1 msec

Close configuration window

Part 2:Secure DMVPN Phase 3 Tunnels

Now that the tunnels have been configured and DMVPN connectivity has been verified, the tunnels can be secured with IPsec.

Step 1:Create the IKE policy.

Create an IKE policy that defines the hash algorithm, encryption type, key exchange method, Diffie-Hellman group, and the authentication method.

Open configuration window

R1(config)# crypto isakmp policy 99

R1(config-isakmp)# hash sha384

R1(config-isakmp)# encryption aes 256

R1(config-isakmp)# group 14

R1(config-isakmp)# authentication pre-share

R1(config-isakmp)# exit

Step 2:Configure the ISAKMP key.

Configure the pre-shared key and peer address. Use 0.0.0.0 to match multiple peer addresses. Use a key of [email protected]#.

R1(config)# crypto isakmp key [email protected]# address 0.0.0.0

Step 3:Create and configure the IPsec transform set.

Configure the IPsec transform set. Use DMVPN_TRANS as the transform set name. Specify esp-aes with a 256-bit key as the encryption transform and esp-sha384-hmac as the authentication transform. Configure the transform set to use IPsec transport mode for the tunnels.

R1(config)# crypto ipsec transform-set DMVPN_TRANS esp-aes 256 esp-sha384-hmac

R1(cfg-crypto-trans)# mode transport

R1(cfg-crypto-trans)# exit

Step 4:Create the IPsec profile.

Create an IPsec profile with the name DMVPN_PROFILE. Associate the DMVPN_TRANS transform set with the profile.

R1(config)# crypto ipsec profile DMVPN_PROFILE

R1(ipsec-profile)# set transform-set DMVPN_TRANS

R1(ipsec-profile)# exit

Step 5:Apply the IPsec profile to the tunnel interface.

Finally, apply the IPsec profile to the tunnel interface. After you apply the profile, you will see the that IPsec is now active and you will lose adjacency with R2 and R3 until their respective ends of the tunnel are configured.

R1(config)# interface tunnel 1

R1(config-if)# tunnel protection ipsec profile DMVPN_PROFILE

R1(config-if)# exit

*Mar 30 07:39:32.398: %CRYPTO-6-ISAKMP_ON_OFF: ISAKMP is ON

R1(config)#

*Mar 30 07:39:32.963: %IOSXE-3-PLATFORM: R0/0: cpp_cp: QFP:0.0 Thread:001 TS:00000000594132950499 %IPSEC-3-RECVD_PKT_NOT_IPSEC: Rec’d packet not an IPSEC packet, dest_addr= 192.0.2.1, src_addr= 192.168.2.1, prot= 47

*Mar 30 07:39:43.664: %DUAL-5-NBRCHANGE: EIGRP-IPv4 68: Neighbor 100.100.100.2 (Tunnel1) is down: holding time expired

*Mar 30 07:39:44.235: %DUAL-5-NBRCHANGE: EIGRP-IPv4 68: Neighbor 100.100.100.3 (Tunnel1) is down: holding time expired

R1(config)#

Close configuration window

Step 6:Configure R2 and R3 with IPsec.

Repeat this configuration on the R2 and R3 routers.

R2(config)# crypto isakmp policy 99

R2(config-isakmp)# hash sha384

R2(config-isakmp)# encryption aes 256

R2(config-isakmp)# group 14

R2(config-isakmp)# authentication pre-share

R2(config-isakmp)# exit

R2(config)# crypto isakmp key [email protected]# address 0.0.0.0

R2(config)# crypto ipsec transform-set DMVPN_TRANS esp-aes 256 esp-sha384-hmac

R2(cfg-crypto-trans)# mode transport

R2(cfg-crypto-trans)# exit

R2(config)# crypto ipsec profile DMVPN_PROFILE

R2(ipsecprofile)# set transform-set DMVPN_TRANS

R2(ipsecprofile)# exit

R2(config)# interface tunnel 1

R2(config-if)# tunnel protection ipsec profile DMVPN_PROFILE

R2(config-if)# exit

R3(config)# crypto isakmp policy 99

R3(config-isakmp)# hash sha384

R3(config-isakmp)# encryption aes 256

R3(config-isakmp)# group 14

R3(config-isakmp)# authentication pre-share

R3(config-isakmp)# exit

R3(config)# crypto isakmp key [email protected]# address 0.0.0.0

R3(config)# crypto ipsec transform-set DMVPN_TRANS esp-aes 256 esp-sha384-hmac

R3(cfg-crypto-trans)# mode transport

R3(cfg-crypto-trans)# exit

R3(config)# crypto ipsec profile DMVPN_PROFILE

R3(ipsecprofile)# set transform-set DMVPN_TRANS

R3(ipsecprofile)# exit

R3(config)# interface tunnel 1

R3(config-if)# tunnel protection ipsec profile DMVPN_PROFILE

R3(config-if)# exit

Step 7:Verify DMVPN Phase 3 operation.

  1. As was done previously, test the operation of the spoke-to-spoke DMVPN. Return to R2. Initiate a traceroute to the simulated LAN interface on R3. The path will pass through R1 as it does in a DMVPN Phase 1 network.

Open configuration window

R2# traceroute 172.16.3.1

Type escape sequence to abort.

Tracing the route to 172.16.3.1

VRF info: (vrf in name/id, vrf out name/id)

1 100.100.100.1 1 msec 1 msec 1 msec

2 100.100.100.3 1 msec *2 msec

  1. Issue the traceroute command again. You will now see that R1 has enabled direct spoke-to-spoke communication between R2 and R3. This tunnel will expire and close dynamically. The tunnel reopens after data for the spoke router is sent again.

R2# traceroute 172.16.3.1

Type escape sequence to abort.

Tracing the route to 172.16.3.1

VRF info: (vrf in name/id, vrf out name/id)

1 100.100.100.3 1 msec *1 msec

Step 8:Verify IPsec configuration.

Note: Shut down a tunnel interface to clear its IPsec socket if you wish to explore the outputs before and after spoke-to-spoke tunnel establishment.

  1. To show information about the IPsec profiles that are configured on a device, issue the show crypto ipsec profile command. Note that the profile that was previously configured is shown along with a default profile.

R2# show crypto ipsec profile

IPSEC profile DMVPN_PROFILE

Security association lifetime: 4608000 kilobytes/3600 seconds

Responder-Only (Y/N): N

PFS (Y/N): N

Mixed-mode : Disabled

Transform sets={

DMVPN_TRANS:{ esp-256-aes esp-sha384-hmac} ,

}

IPSEC profile default

Security association lifetime: 4608000 kilobytes/3600 seconds

Responder-Only (Y/N): N

PFS (Y/N): N

Mixed-mode : Disabled

Transform sets={

default:{ esp-aes esp-sha-hmac} ,

}

Close configuration window

  1. It is very important to verify that tunnel traffic will be encrypted. On R1, issue the show dmvpn detail command. As the hub router, R1 should see the spoke peers. The first part of the output shows the tunnel interface status and the peer table. Both peers should be shown with their transport and overlay interface addresses, as you have seen previously.

The Crypto Session Details portion of the output should contain information about the status of the encrypted tunnels. Both of the spoke routers should appear in this output also. Note that the transform set that you configured is also displayed in the Crypto Session output.

Open configuration window

R1# show dmvpn detail

<output omitted>

Interface Tunnel1 is up/up, Addr. is 100.100.100.1, VRF “”

Tunnel Src./Dest. addr: 192.0.2.1/Multipoint, Tunnel VRF “”

Protocol/Transport: “multi-GRE/IP”, Protect “DMVPN_PROFILE”

Interface State Control: Disabled

nhrp event-publisher : Disabled

Type:Hub, Total NBMA Peers (v4/v6): 2

# EntPeer NBMA Addr Peer Tunnel Add StateUpDn Tm AttrbTarget Network

—– ————— ————— —– ——– —– —————–

1 192.168.2.1100.100.100.2UP 00:04:25D100.100.100.2/32

1 192.168.3.1100.100.100.3UP 00:04:59D100.100.100.3/32

Crypto Session Details:

——————————————————————————–

Interface: Tunnel1

Session: [0x7F6E17B867D0]

Session ID: 0

IKEv1 SA: local 192.0.2.1/500 remote 192.168.2.1/500 Active

Capabilities:(none) connid:1001 lifetime:23:59:19

Session ID: 0

IKEv1 SA: local 192.0.2.1/500 remote 192.168.2.1/500 Active

Capabilities:(none) connid:1002 lifetime:23:59:28

Crypto Session Status: UP-ACTIVE

fvrf: (none), Phase1_id: 192.168.2.1

IPSEC FLOW: permit 47 host 192.0.2.1 host 192.168.2.1

Active SAs: 4, origin: crypto map

Inbound:#pkts dec’ed 17 drop 0 life (KB/Sec) 4607998/3568

Outbound: #pkts enc’ed 16 drop 0 life (KB/Sec) 4607999/3568

Outbound SPI : 0xD2E76488, transform : esp-256-aes esp-sha384-hmac

Socket State: Open

Interface: Tunnel1

Session: [0x7F6E17B86950]

Session ID: 0

IKEv1 SA: local 192.0.2.1/500 remote 192.168.3.1/500 Active

Capabilities:(none) connid:1004 lifetime:23:59:48

Session ID: 0

IKEv1 SA: local 192.0.2.1/500 remote 192.168.3.1/500 Active

Capabilities:(none) connid:1003 lifetime:23:59:40

Crypto Session Status: UP-ACTIVE

fvrf: (none), Phase1_id: 192.168.3.1

IPSEC FLOW: permit 47 host 192.0.2.1 host 192.168.3.1

Active SAs: 6, origin: crypto map

Inbound:#pkts dec’ed 11 drop 0 life (KB/Sec) 4607999/3588

Outbound: #pkts enc’ed 10 drop 0 life (KB/Sec) 4607999/3588

Outbound SPI : 0xCB3D3313, transform : esp-256-aes esp-sha384-hmac

Socket State: Open

Pending DMVPN Sessions:

Close configuration window

  1. Issue the show crypto ipsec sa command on R2 to display the security associations (sa) that have been made by R2. This output is for the spoke-to-hub tunnel between R1 and R2 prior to the establishment of the spoke-to-spoke tunnel. This command provides additional details regarding the IPsec status of the tunnel, encrypted and decrypted packet statistics, and other details regarding characteristics of the encrypted tunnel.

Open configuration window

R2# show crypto ipsec sa

interface: Tunnel1

Crypto map tag: Tunnel1-head-0, local addr 192.168.2.1

protected vrf: (none)

localident (addr/mask/prot/port): (192.168.2.1/255.255.255.255/47/0)

remote ident (addr/mask/prot/port): (192.0.2.1/255.255.255.255/47/0)

current_peer 192.0.2.1 port 500

PERMIT, flags={origin_is_acl,}

#pkts encaps: 125, #pkts encrypt: 125, #pkts digest: 125

#pkts decaps: 126, #pkts decrypt: 126, #pkts verify: 126

#pkts compressed: 0, #pkts decompressed: 0

#pkts not compressed: 0, #pkts compr. failed: 0

#pkts not decompressed: 0, #pkts decompress failed: 0

#send errors 0, #recv errors 0

local crypto endpt.: 192.168.2.1, remote crypto endpt.: 192.0.2.1

plaintext mtu 1458, path mtu 1514, ip mtu 1514, ip mtu idb Loopback0

current outbound spi: 0x97C1D18A(2546061706)

PFS (Y/N): N, DH group: none

inbound esp sas:

spi: 0xD2E76488(3538379912)

transform: esp-256-aes esp-sha384-hmac ,

in use settings ={Transport, }

conn id: 2003, flow_id: ESG:3, sibling_flags FFFFFFFF80000008, crypto map: Tunnel1-head-0

sa timing: remaining key lifetime (k/sec): (4607984/3047)

IV size: 16 bytes

replay detection support: Y

Status: ACTIVE(ACTIVE)

inbound ah sas:

inbound pcp sas:

outbound esp sas:

spi: 0x97C1D18A(2546061706)

transform: esp-256-aes esp-sha384-hmac ,

in use settings ={Transport, }

conn id: 2004, flow_id: ESG:4, sibling_flags FFFFFFFF80000008, crypto map: Tunnel1-head-0

sa timing: remaining key lifetime (k/sec): (4607990/3047)

IV size: 16 bytes

replay detection support: Y

Status: ACTIVE(ACTIVE)

outbound ah sas:

outbound pcp sas:

The output below is for the same command after the spoke-to-spoke tunnel is open. Entries exist for both the tunnel to R1 and the spoke-to-spoke tunnel between R2 and R3.

R2# show crypto ipsec sa

interface: Tunnel1

Crypto map tag: Tunnel1-head-0, local addr 192.168.2.1

protected vrf: (none)

localident (addr/mask/prot/port): (192.168.2.1/255.255.255.255/47/0)

remote ident (addr/mask/prot/port): (192.168.3.1/255.255.255.255/47/0)

current_peer 192.168.3.1 port 500

PERMIT, flags={origin_is_acl,}

#pkts encaps: 0, #pkts encrypt: 0, #pkts digest: 0

#pkts decaps: 0, #pkts decrypt: 0, #pkts verify: 0

#pkts compressed: 0, #pkts decompressed: 0

#pkts not compressed: 0, #pkts compr. failed: 0

#pkts not decompressed: 0, #pkts decompress failed: 0

#send errors 0, #recv errors 0

local crypto endpt.: 192.168.2.1, remote crypto endpt.: 192.168.3.1

plaintext mtu 1458, path mtu 1514, ip mtu 1514, ip mtu idb Loopback0

current outbound spi: 0x658E8CF5(1703841013)

PFS (Y/N): N, DH group: none

inbound esp sas:

spi: 0xFA8FC9F2(4203727346)

transform: esp-256-aes esp-sha384-hmac ,

in use settings ={Transport, }

conn id: 2005, flow_id: ESG:5, sibling_flags FFFFFFFF80000008, crypto map: Tunnel1-head-0

sa timing: remaining key lifetime (k/sec): (4608000/3316)

IV size: 16 bytes

replay detection support: Y

Status: ACTIVE(ACTIVE)

spi: 0x59C41A42(1506024002)

transform: esp-256-aes esp-sha384-hmac ,

in use settings ={Transport, }

conn id: 2007, flow_id: ESG:7, sibling_flags FFFFFFFF80004008, crypto map: Tunnel1-head-0

sa timing: remaining key lifetime (k/sec): (4608000/3326)

IV size: 16 bytes

replay detection support: Y

Status: ACTIVE(ACTIVE)

inbound ah sas:

inbound pcp sas:

outbound esp sas:

spi: 0x60CC6F77(1624010615)

transform: esp-256-aes esp-sha384-hmac ,

in use settings ={Transport, }

conn id: 2006, flow_id: ESG:6, sibling_flags FFFFFFFF80000008, crypto map: Tunnel1-head-0

sa timing: remaining key lifetime (k/sec): (4608000/3316)

IV size: 16 bytes

replay detection support: Y

Status: ACTIVE(ACTIVE)

spi: 0x658E8CF5(1703841013)

transform: esp-256-aes esp-sha384-hmac ,

in use settings ={Transport, }

conn id: 2008, flow_id: ESG:8, sibling_flags FFFFFFFF80004008, crypto map: Tunnel1-head-0

sa timing: remaining key lifetime (k/sec): (4608000/3326)

IV size: 16 bytes

replay detection support: Y

Status: ACTIVE(ACTIVE)

outbound ah sas:

outbound pcp sas:

protected vrf: (none)

localident (addr/mask/prot/port): (192.168.2.1/255.255.255.255/47/0)

remote ident (addr/mask/prot/port): (192.0.2.1/255.255.255.255/47/0)

current_peer 192.0.2.1 port 500

PERMIT, flags={origin_is_acl,}

#pkts encaps: 67, #pkts encrypt: 67, #pkts digest: 67

#pkts decaps: 67, #pkts decrypt: 67, #pkts verify: 67

#pkts compressed: 0, #pkts decompressed: 0

#pkts not compressed: 0, #pkts compr. failed: 0

#pkts not decompressed: 0, #pkts decompress failed: 0

#send errors 0, #recv errors 0

local crypto endpt.: 192.168.2.1, remote crypto endpt.: 192.0.2.1

plaintext mtu 1458, path mtu 1514, ip mtu 1514, ip mtu idb Loopback0

current outbound spi: 0x97C1D18A(2546061706)

PFS (Y/N): N, DH group: none

inbound esp sas:

spi: 0xD2E76488(3538379912)

transform: esp-256-aes esp-sha384-hmac ,

in use settings ={Transport, }

conn id: 2003, flow_id: ESG:3, sibling_flags FFFFFFFF80000008, crypto map: Tunnel1-head-0

sa timing: remaining key lifetime (k/sec): (4607991/3305)

IV size: 16 bytes

replay detection support: Y

Status: ACTIVE(ACTIVE)

inbound ah sas:

inbound pcp sas:

outbound esp sas:

spi: 0x97C1D18A(2546061706)

transform: esp-256-aes esp-sha384-hmac ,

in use settings ={Transport, }

conn id: 2004, flow_id: ESG:4, sibling_flags FFFFFFFF80000008, crypto map: Tunnel1-head-0

sa timing: remaining key lifetime (k/sec): (4607995/3305)

IV size: 16 bytes

replay detection support: Y

Status: ACTIVE(ACTIVE)

outbound ah sas:

outbound pcp sas:

  1. On R2 issue the show crypto isakmp sa command to view the Internet Security Association Management Protocol (ISAKMP) SAs between the peers. Before the formation of the spoke-to-spoke tunnel, SAs have been made between R2 and R3, but no further negotiations have occurred, as indicated by the MM_NO_STATE state of the two SAs between the routers.

R2# show crypto isakmp sa

IPv4 Crypto ISAKMP SA

dstsrcstateconn-id status

192.0.2.1192.168.2.1QM_IDLE1001 ACTIVE

192.168.2.1192.0.2.1QM_IDLE1002 ACTIVE

192.168.3.1192.168.2.1MM_NO_STATE1004 ACTIVE (deleted)

192.168.2.1192.168.3.1MM_NO_STATE1003 ACTIVE (deleted)

IPv6 Crypto ISAKMP SA

After traffic has established the spoke-to-spoke tunnel, the SAs all show the QM_IDLE state. The SAs have been fully negotiated and are available for further ISAKMP quick mode exchanges.

Note: ISAKMP modes are outside the scope of this course.

R2# show crypto isakmp sa

IPv4 Crypto ISAKMP SA

dstsrcstateconn-id status

192.0.2.1192.168.2.1QM_IDLE1001 ACTIVE

192.168.2.1192.0.2.1QM_IDLE1002 ACTIVE

192.168.3.1192.168.2.1QM_IDLE1004 ACTIVE

192.168.2.1192.168.3.1QM_IDLE1003 ACTIVE

IPv6 Crypto ISAKMP SA

  1. You have successfully configured and verified IPsec on DMVPN Phase 3 tunnels.

Close configuration window

Router Model

Ethernet Interface #1

Ethernet Interface #2

Serial Interface #1

Serial Interface #2

1800

Fast Ethernet 0/0 (F0/0)

Fast Ethernet 0/1 (F0/1)

Serial 0/0/0 (S0/0/0)

Serial 0/0/1 (S0/0/1)

1900

Gigabit Ethernet 0/0 (G0/0)

Gigabit Ethernet 0/1 (G0/1)

Serial 0/0/0 (S0/0/0)

Serial 0/0/1 (S0/0/1)

2801

Fast Ethernet 0/0 (F0/0)

Fast Ethernet 0/1 (F0/1)

Serial 0/1/0 (S0/1/0)

Serial 0/1/1 (S0/1/1)

2811

Fast Ethernet 0/0 (F0/0)

Fast Ethernet 0/1 (F0/1)

Serial 0/0/0 (S0/0/0)

Serial 0/0/1 (S0/0/1)

2900

Gigabit Ethernet 0/0 (G0/0)

Gigabit Ethernet 0/1 (G0/1)

Serial 0/0/0 (S0/0/0)

Serial 0/0/1 (S0/0/1)

4221

Gigabit Ethernet 0/0/0 (G0/0/0)

Gigabit Ethernet 0/0/1 (G0/0/1)

Serial 0/1/0 (S0/1/0)

Serial 0/1/1 (S0/1/1)

4300

Gigabit Ethernet 0/0/0 (G0/0/0)

Gigabit Ethernet 0/0/1 (G0/0/1)

Serial 0/1/0 (S0/1/0)

Serial 0/1/1 (S0/1/1)

Note: To find out how the router is configured, look at the interfaces to identify the type of router and how many interfaces the router has. There is no way to effectively list all the combinations of configurations for each router class. This table includes identifiers for the possible combinations of Ethernet and Serial interfaces in the device. The table does not include any other type of interface, even though a specific router may contain one. An example of this might be an ISDN BRI interface. The string in parenthesis is the legal abbreviation that can be used in Cisco IOS commands to represent the interface.

End of document

enable

configure terminal

enable

conf t

crypto isakmp policy 99

hash sha384

encryption aes 256

group 14

authentication pre-share

exit

crypto isakmp key [email protected]# address 0.0.0.0

crypto ipsec transform-set DMVPN_TRANS esp-aes 256 esp-sha384-hmac

mode transport

exit

crypto ipsec profile DMVPN_PROFILE

set transform-set DMVPN_TRANS

exit

interface tunnel1

tunnel protection ipsec profile DMVPN_PROFILE

exit

Leave a Reply